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Abstract. During an earthquake, seismic waves carry the complexity of the rupture to the 
ground surface. Empirical ground motion prediction equations, calibrated by past earthquake 
seismic recordings, are often used to predict Peak Ground Acceleration (PGA) and its 
variability. However, the scarcity of near-fault recordings for large earthquakes prevents 
using such equations to predict near-fault PGA. Simulation of strong ground motion then 
offers an attractive alternative (e.g. [1]) to assess seismic hazard in near-fault if realistic 
scenarios of seismic rupture are provided. In order to better understand the effects of rupture 
parameters on surface ground motion and to capture the key source ingredients that most 
impact ground motion variability, we simulate ground motions produced by various M7 
rupture earthquake scenarios on a vertical strike-slip fault. We compute the ground motion up 
to 5Hz at sites located at 5 km, 25 km and 70 km from the fault and in the far-field. The 
rupture parameters (rupture speed, slip, rise time) are modeled by using a statistical source 
model generator in which the source complexity is modeled in terms of standard deviation, 
spatial correlation length and correlation between source parameters, as proposed in [2]. In 
the far-field, we show that PGA is mainly generated by abrupt changes of the rupture 
propagation, that is, stopping phases at the fault boundaries or strong heterogeneities of 
rupture speed along the rupture. We observe that PGA is mostly controlled by the average 
rupture speed and the average stress drop, and to a lesser extent by the standard deviation of 
the rupture speed... Interestingly, correlation between source parameters and spatial 
correlation length do not affect average PGA and related variability significantly.    
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1. Introduction 

Earthquakes have caused, and can cause in the future, enormous loss of life, injury, 
destruction of property, and economic and social disorder. Determining the earthquake 
intensity does help developers make good decisions about where to build and what type of 
forces structures should withstand. Statistical analysis of strong ground motion databases 
helps providing quantitative estimates of expected ground-motion levels for a potential future 
earthquake. Due to the lack of recordings in the vicinity of faults, there is however the need 
to develop physics-based simulation techniques incorporating the complexity of earthquake 
rupture to obtain reliable near-field ground motions (e.g. [1]). The present study focuses on 
the relationship between the rupture process and the high-frequency ground motion (average 
and variability) represented by the Peak Ground Acceleration (PGA).  

It is commonly claimed that the PGA is driven by the stress drop Δτ (e.g. [3]–[5]), 
which is related to the available elastic energy during the rupture process on the rupture area. 
The stress drop is commonly supposed to be proportional to the cube of the corner frequency 
f!, determined from the Fourier amplitude spectra of the displacement ground motion, under 
the assumption of a 𝜔!! source model [6]. In the framework of stochastic simulations of 
ground motion time histories, the stress drop is then generally used to control the high-
frequency level of ground motion (e.g. [7]). Using the random vibration theory, [7] obtained 
that 𝑃𝐺𝐴 ∝ f!

!.!, leading to 𝑃𝐺𝐴 ∝ Δτ!.! for a Brune (1970) source model. Recently, [8] 
pointed out the importance of considering the rupture velocity V! in the corner frequency 
definition, and obtained: 

𝑃𝐺𝐴 ∝ Δτ!.!V!  !.! (1) 

 
 

Note that in Equation (1), Δτ and V! are considered as average source properties. As such, 
the PGA is controlled by the corner frequency, which, in turn, depends on large-scale source 
parameters describing the macroscopic features of the rupture process. 

On the other hand, several studies suggest that the high-frequency ground motion may 
be controlled by smaller-scale processes at frequencies larger than the corner frequency. 
Recently, [9] proposed that earthquake moment-rate functions are better fitted by a two-
corner frequency spectrum model. The largest one may be associated with local-scale source 
parameters and controls the PGA. Which of those source processes mainly control the high-
frequency ground motion remains however strongly debated. Using dynamic rupture 
simulations, [10] showed that strong variations of the rupture velocity are very efficient 
sources of high frequency radiation, especially rupture stopping phases at the fault 
boundaries. This is confirmed by rupture analyses using “back-projection” techniques of 
teleseismic high-frequency body waves (e.g. [11]). Besides, [12] claimed that PGA is directly 
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connected to the characteristic length of static slip asperities, small slip asperities generating 
larger PGA values. This contradicts [13], who showed that large asperities increase ground 
motion coherency and lead to higher PGA values. Furthermore, [14] claims that high-
frequency ground motion is much more sensitive to the peak slip-rate than slip 
heterogeneities. These contradictory results shed the light on the need for further 
investigations on the link between the heterogeneity level of kinematic rupture parameters 
and high-frequency ground motion. Finally, small-scale source heterogeneities pertain 
seismic motion wavelengths that are difficult to model owing to uncertainties in the 
propagation medium. Small-scale heterogeneities remain then poorly resolved by source 
studies.  

Based on heterogeneous spontaneous dynamic rupture simulations, several authors 
showed that local kinematic source parameters may not be independent but correlated (e.g., 
[2], [15], [16]). Such correlations may also impact the ground motion and its variability. 
Thus, larger correlation between source parameters may produce stronger peak ground 
velocities near the source [16]. Nevertheless, the level of correlation between kinematic 
source parameters remains poorly constrained, because it strongly depends on the friction law 
assumed in the dynamic simulations [17]. 

This study aims to identify the kinematic source parameters that mostly control the PGA 
and its variability, deploying numerical ground motion simulations in the frequency range [0-
5 Hz]. First, we identify the mechanisms of PGA generation in homogeneous kinematic 
ruptures. Thenceforward, we study the PGA generated in heterogeneous kinematic ruptures. 
Afterwards, we run a sensibility analysis to determine the kinematic source parameters that 
mostly contribute to the PGA and its variability. We consider not only “large-scale” source 
parameters (average stress drop and average rupture velocity) but also “local-scale” 
parameters, that is statistical parameters controlling the level of source heterogeneity as well 
as the level of correlation between source parameters. 

2. Mechanism of PGA generation in kinematic source models 

2.1.Earthquake source model  

Earthquake ruptures generate seismic waves that travel from the source to the surface and 
cause ground motions over a wide range of frequencies. One approach to describe the source 
process is the so-called kinematic approach, which consists in a priori prescribing the 
displacement discontinuity across the fault surface. The local slip-rate function needs to be 
specified (e.g. [18], [19]) to describe the space-time evolution of slip along the fault by 
means of kinematic parameters. We use the pseudo-dynamic source model developed by [2] 
for a rectangular fault plane. In this model, kinematic source parameters are calibrated using 
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suite of spontaneous heterogeneous dynamic rupture simulations. The rupture starts from the 
hypocenter and expands over the fault plane with a rupture speed (𝑉!). Each point on the 
fault slips as it is reached by the rupture front and thus is characterized by a final slip value 
(𝐷) and a peak slip velocity (𝑝𝑠𝑣). In order to characterize the spatial variability of the 
kinematic source parameters (𝑉!, 𝐷 and 𝑝𝑠𝑣) over the fault area, two statistical properties 
are considered. First, the 1-point statistics is defined for a given fault point by the mean value 
(𝜇) and the standard deviation (𝜎) of the considered source parameter, considering a normal 
distribution. Second, the 2-point statistics is defined by the correlation lengths (𝑎! and 𝑎!, 
representing the characteristic length of heterogeneities along-strike and along-dip, 
respectively) and the spatial cross-correlation, defined by the correlation coefficient (𝜌) 
between any pair of kinematic parameters at a given point, and by a correlation function. We 
use a Von Karman autocorrelation function [20]. Note that our statistical model is stationary, 
which implies that the statistics of any parameter is constant over the fault plane. 

2.2.Earthquake source parameterization 

We generate rupture models equivalent to a moment magnitude M=7 (FIG. 1). The rupture 
length L=70 km and width W=14 km are derived from the 𝑀! − 𝐿 scaling relationship by 

[21]. The mean value of the slip 𝜇!  is then defined by: 𝜇! =
!!

! ! !
, where 𝑀! is the 

seismic moment and 𝐺 is the shear modulus. We make sure that the maximum slip does not 
exceed the ceiling defined by [22] as a function of magnitude. The average stress drop ∆𝜏 is 
expressed as: 

∆𝜏 = 𝐶
𝜇!
𝐿 ∗𝑊

  (2) 

 

where 𝐶 is a shape factor with a value close to 1 [23]. The average value of the rupture 
speed 𝜇!" is chosen in the range of values commonly reported by source studies [24]. We 
then assume that 𝜇!" = 0.8𝑉!, where 𝑉! is the shear wave speed. The mean value of the 
𝑝𝑠𝑣 is chosen from the database of spontaneous dynamic rupture simulations developed by 
[2]. The slip duration, also called rise time 𝑇!"#$, is calculated as a function of the peak slip 
velocity 𝑝𝑠𝑣 and the slip value 𝐷, for a Yoffe slip-rate function [19]. 𝑇!"#$ is allowed to 
vary between 0.1 and 5s. The fault area is embedded in at 0.5 km below the surface. The 
spatial distribution of final slip and rupture speed are tapered so as to avoid stress 
singularities at the fault boundaries. Therefore, the values of the source parameters decrease 
to zero as they reach 20% of the fault dimension at each side, with a quarter circular taper. 
We fix the hypocenter position to 20% of the rupture length along the strike and 80% along 
the dip [25], such that the rupture propagates unilaterally.  
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FIG. 1. Illustration of a rupture realization on the vertical fault plane, corresponding to a M7 event, 

and location of stations S1, S2, S3, S4 and S5. 

2.3.PGA computation in the far-field approximation 

The ground motion for a homogeneous elastic medium in the far-field approximation 𝑢!! 𝑡  
is proportional to the source time function, also called the moment rate function 𝑀(𝑡). We 
use Equation (3) to compute the ground motion: 

𝑢!! 𝑡 =
1

4𝜋𝜌𝑉!!
 ×  

𝑅𝑃
𝑋  × 𝑀 𝑡 −

𝑋
𝑉!

× 𝑒𝑥𝑝 −
𝜋𝑓𝑋
𝑉!𝑄!

 
 (3) 

where 𝑋 is the distance to the rupture, assumed equal to 100 km, 𝜌 is the rock density 
(𝜌=2.7g/cm3), 𝑉!  is the shear wave speed (𝑉!=3.58km/s), 𝑅𝑃  is the average radiation 
pattern of the shear waves (according to [26], we assume RP=0.63), 𝑄! is the attenuation 
factor (we choose 𝑄!=220, which is a realistic value, e.g. [27]) and 𝑡 and 𝑓 are the time 
and the frequency. The attenuation of ground motion is represented by the geometrical 

attenuation 1/𝑋 and by the anelastic attenuation 𝑒𝑥𝑝 − !"#
!! !!

. We then compute PGA as 

the maximum absolute value of the displacement second derivative. Note that a quarter-
period-cosine taper is applied to the first second of the acceleration to remove the artificial 
strong phase due to the sharp increase of rupture velocity at the rupture nucleation. 
Theoretical studies show that the rupture velocity increases smoothly during nucleation (e.g. 
[28]) and such initiation phases are not observed on real seismograms.  

2.4.Mechanism of PGA generation for homogeneous ruptures 

We start by investigating homogeneous ruptures, in order to identify the mechanisms of PGA 
generation in a simple rupture case. The slip, the rupture speed and the rise time are then 
constant along the rupture (𝜎 = 0), except at the fault boundaries due to the applied tapering. 
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The parameters used for simulations are summarized in TABLE 1 (simulation A). We use the 
concept of isochrones to extract the part of the rupture that produces the PGA [29]. 
Isochrones are all the points on the fault that radiate elastic waves that arrive at a given 
station at the same time. In the case of the far-field approximation (Equation (3)), the 
isochrone at the PGA time is simply the rupture front at the PGA time (FIG. 2a, b, c).  

TABLE 1: The source parameters: Mw, L, W, ∆𝜏, D, Vr, ax, az, psv, and Trise stand for the magnitude, 
length, width, stress drop, slip, rupture speed, spatial correlation lengths along the strike and along 

the dip directions, peak slip velocity and rise time, respectively. 𝜇 represents the mean value, 𝜎 is 

the standard deviation and 𝜌 is the coefficient of correlation.  

 

For homogeneous ruptures, we notice that ground acceleration is essentially 
dominated by four peaks (FIG. 2e), corresponding to the times where the rupture reaches the 
four fault boundaries. For the chosen rupture nucleation position and fault boundary tapering 
function, the stopping phase generated by the rupture arrest at the fault top is responsible for 
the PGA. Since the tapering function determines the sharpness of the rupture stopping, it 
highly controls the PGA value. Thus, increasing the tapering length for both the rupture 
velocity and the slip tends to decrease the PGA (FIG. 2f). In the following we explore the 
impact of various kinematic parameters on the PGA. 

By decreasing the length of the rupture L while preserving the magnitude, we increase 
the stress drop ∆𝜏 and the slip D. Considering a decrease of L by a factor of 1.2, D and ∆𝜏 
increases by factors of 1.2 and 1.31, respectively. According to Equation (1), PGA should 
then increase by a factor of ~1.24. Though the PGA remains almost unchanged. This is 
because Equation (1) is derived assuming a simple Brune’s source model and random phases 
for the source spectrum [6]. PGA is then estimated using the random vibration theory and 
depends only on the corner frequency (that is, the overall rupture duration). Our source model 
also matches a Brune’s source model (FIG. 2d). However PGA is not driven by the corner 
frequency but is rather controlled locally by the rupture stopping. And the induced stopping 
phases remain poorly affected by the stress drop increase.   

 We next analyse the effect of the rupture velocity Vr and the rise time Trise. According 
to Equation (1), changing VR from 3 to 3.3 km/s should increase the PGA by a factor of 1.25 
(FIG. 2h). This is also the case in our simulations. But again, we note that the simulated PGA 
cannot be modelled using random phases but is generated by a local process. Furthermore, 



7 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear 
   Installations: issues and challenges towards full Seismic Risk Analysis 
 
   Cadarache-Château, France, 14-16 May 2018 
 
reducing the Trise value from 4 to 1.5 s increases the ground motion amplitude spectral level 
above f≈1/4=0.25 Hz (FIG. 2d), but only increases the PGA value by 15% (FIG. 2i). This 
implies that the PGA stopping phase is little sensitive to the width of the local slip function.  

 

FIG. 2. a) to c). Kinematic rupture parameters for a homogeneous rupture of a M7 event, with 

L=70km, Vr=3km/s, and Trise=4s, tapered at the boundaries. The white contour lines represent the 

propagation time and the green contouring shows the location of the rupture front at the PGA time. 

d). Displacement spectra for all the scenarios presented in cases e) to i). e). Acceleration calculated 

using Equation (3), corresponding to the scenario shown in a to c. This acceleration is referred to as 

the reference case. f). Accelerogram obtained using a wider taper at the fault boundaries. g). 

Accelerograms due to a smaller rupture length while keeping M=7; the stress drop, calculated using 

Equation (2), is increased by a factor of 1.3. h). Accelerogram in case of a faster rupture speed 

Vr=3.3km/s. i). Accelerogram obtained for a shorter rise time of 1.5s.  

2.5.Mechanism of PGA generation for heterogeneous ruptures 

FIG. 3a and 3b show two different realizations of heterogeneous ruptures with the same 
statistical properties of the source parameters (TABLE 1 - simulation B). These source 
models are associated with two different mechanisms of PGA generation. On the one hand, 
the PGA on FIG. 3a is induced by the rupture stopping at the top fault boundary, as observed 
for a homogeneous rupture. The PGA is however higher (0.04 g instead of 0.024 g) because 
the rupture speed is heterogeneous and gives rise to a stronger rupture speed drop in this case. 
On the other hand, the PGA on FIG. 3b is controlled by the large rupture speed patches 
located at the right edge of the rupture, resulting in an abrupt change of rupture velocity. 
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Thus, the position of the high rupture speed patches and their interactions with the fault 
boundaries seems to play an important role in the PGA generation. Note that the PGA is little 
sensitive to the correlation length ax (characteristic length of rupture heterogeneities), as 
illustrated in FIG. 4. Moreover, it is interesting to note that the PGA sensitivity to the rise 
time value is much stronger than for an homogeneous rupture.    

 

FIG. 3. Two realizations of heterogeneous ruptures of a M7 event, with L=70km, Vr=3km/s, and 

Trise=4s, tapered at the boundaries and the corresponding acceleration computed using Equation (3). 

The statistical parameters are 𝜎! = 0.5𝜇!, 𝜎!" = 0.5𝜇!", ax=4km, 𝜌!!!"=0.  

3. Sensitivity of PGA to source parameters 

The above-mentioned tests illustrate some important source mechanisms involved in the PGA 
generation. We now aim to quantify the PGA sensitivity to the source parameters, by 
perturbing one parameter at a time. We still compute PGA in the far-field approximation 
(Equation (3)), but also for a network of near-field stations (FIG. 1). First, we investigate the 
sensitivity to the 1-point and 2-point statistical parameters describing the rupture 
heterogeneity, which are very poorly constrained (e.g. [17]). We also compute the sensitivity 
to large-scale source parameters (average rupture velocity and average stress drop). 
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FIG. 4. Mean PGA value (over 50 rupture realizations) for different combinations of rise-time and 

spatial correlation length values.  

3.1.Computation of near-fault PGA 

We synthesize near-fault ground motions in a 1D layered medium (APPENDIX 1) for 
stations located at rupture distances 𝑅!"# of 5 km (station S1 and S2), 25 km (station S3 and 
S4) and 70 km (station S5) (FIG. 1), using the representation theorem: 

𝑈!"#"$%& ! 𝑡 ≈  𝐺! 𝑥,𝑦, 𝑡 ∗ 𝐹!  𝑥,𝑦, 𝑡
!

  (4) 

where * is the convolution operator. The summation over space integrates the contributions 
from the finite fault that has been discretized into a 2-D grid of subfaults. 𝐹!  (𝑥,𝑦, 𝑡) is the 
slip rate function at position 𝑥,𝑦  computed using the source model defined above, while 
𝐺! 𝑥,𝑦, 𝑡  represent the Green’s functions calculated using the discrete wavenumber 
technique in the frequency range 0– 5 𝐻𝑧 [30], [31].  

Finally, the PGA is computed using an orientation-independent measure proposed by 
[32] (GMRoTD50). This measure comprises a rotation of the two orthogonal components 
from 1 to 90, and evaluates PGA from the geometric mean of the rotated time series.  

Figure APPENDIX 2 illustrates a realization of kinematic rupture from case 5 
(TABLE 1), with the calculated accelerations for both the EW and the NS components (black 
and red solid lines, respectively). The far-field acceleration Equation (3) is also shown.  

3.2.Computation of the PGA sensitivity 

We consider 8 rupture scenarios, reported in TABLE 1. In order to consider potential 
variations of the PGA sensibility due to the hypocenter position, we implement 3 different 
locations of the hypocentre (along-strike coordinates of 20%, 50% and 80% of the rupture 
length). In addition, we generate 50 rupture realizations for each nucleation position, leading 
to 150 rupture realizations for each of the 8 scenarios. The first scenario (referred to as case 



10 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear 
   Installations: issues and challenges towards full Seismic Risk Analysis 
 
   Cadarache-Château, France, 14-16 May 2018 
 
1) assumes 𝜇!" = 3𝑘𝑚/𝑠, 𝜎! = 0.5𝜇! and 𝜎!" = 0.25 𝜇!". The correlation lengths in the 
along-strike and down-slip directions are derived from the 𝑀! − [𝑎!;  𝑎!]  scaling 
relationship found by [20]. The final slip and the rupture velocity are supposed to be 
uncorrelated (ρD-Vr=0) [15], while the final slip and the peak slip rate are assumed to be 
positively correlated (ρD-psv=0.8 [2]). Since such a positive correlation is found in most of the 
published studies (e.g. [33]), the value of ρD-psv=0.8 is kept for all the considered cases. The 
parameters of the reference case 1 are then perturbed independently to generate 7 additional 
cases of rupture scenarios. The sensitivities 𝑆!"#! to the different source parameters are 
then computed as:   

𝑆!"#! =

PGA! −  PGA !
PGA!

(𝑃! −  𝑃!)
𝑃!

 

(5) 

Where PGA! and PGA! are the average PGA values computed for the case k and the 
reference case r, 𝑃! and 𝑃! are the values of the perturbed parameter for case k and r, 
respectively. Cases 2, 3, 4, 5 and 8 are associated to the sensitivity of 𝜇!", 𝜎!, 𝜎!" ,𝑎! and 
∆𝜏, and are compared with the reference case r=1, while cases 6 and 7 are used to quantify 
the sensitivity of ρD-Vr and are compared to reference case r=4.  

FIG. 5 represents the PGA sensitivity to each source parameter for all the considered 
near-field stations as well as using the far-field approximation. The median sensitivity over 
the 150 rupture realizations is represented by coloured full circles, while the open black 
circles represent the 16% and 84% quantiles. 

3.3.Results 

We first consider the PGA sensitivity computed in the far-field approximation (FIG. 5). The 
first striking observation is that the PGA sensitivity is essentially controlled by the large-scale 
source parameters Vr and ∆𝛕, and by the amplitude of the rupture velocity fluctuation 𝜎!". 
The PGA sensitivity to 𝜇!" has the largest average value (1.4) and is the less variable (16% 
and 84% quantiles equal to 0.9 and 1.9, respectively). Besides, the PGA sensitivity to ∆𝜏 is 
more variable (16% and 84% quantiles equal to -0.4 and 0.9, respectively, with a mean value 
of 0.2. Note that this is much lower than the value of 0.8 expected from Equation (1). As 
explained in sections 2.3 the stopping phases generated by the rupture arrest at the fault 
boundaries in homogeneous ruptures are very poorly sensitive to the stress drop (the PGA 
sensitivity to ∆𝜏 is then ~0.1, see FIG. 2g). This suggests that the rupture arrest at the fault 
boundaries remains the main mechanism of PGA generation in our suite of heterogeneous 
ruptures. In this case, the choice of the tapering function used to avoid unphysical source 
parameters discontinuities at the fault boundaries may significantly impact the PGA value. 
By considering the suite of rupture model of case 1 as a reference, and by applying a 60%-
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larger taper length on those models, we obtain a sensitivity value of -0.17. This show that the 
arbitrary choice of the tapering function may be a significant source of epistemic uncertainty 
in PGA computation based on kinematic source modelling. 

In order to illustrate the variability of the PGA sensitivity to ∆𝛕 in the far-field 
approximation, FIG. 6a and FIG. 6b represent 2 rupture realizations generated by resizing the 
rupture parameter distributions of FIG. 3a and FIG. 3b to obtain ruptures with a length of 55 
km instead of 70 km (the along-strike grid size is scaled by 55/70 and the slip is scaled so to 
preserve the seismic moment). The comparison between FIG. 3a and FIG. 6a shows that a 
stress drop increase can attenuate a stopping phase and hence reduce the PGA, while FIG. 3b 
and FIG. 6b illustrate another mechanism, in which the stress drop increase changes the 
location of the PGA generation and induce a PGA increase. Furthermore, the average 
sensitivities to the statistical source parameters (𝜎! ,𝜎!" ,𝑎! , 𝜌!,𝜌!) range between -0.17 and 
0.14. In addition to these smaller values, the ratios between the average absolute and the 68% 
confidence interval are also smaller, indicating that there are no clear tendencies. 

The results obtained at the near-field stations also reveal a strong dominance of the 
average rupture velocity effect. The sensitivity values obtained at station S5, located at a Rrup 
distance equal to the rupture length, are very close to the value obtained in the far-field 
approximation, using Equation (3). We note, however, a stronger sensitivity to the rupture 
velocity at stations S2 and S4. This is because in case of a nucleation at the left or at the 
centre of the fault, strong directivity effects affect those stations. Note that we do not 
compute the PGA sensitivity to the stress drop, because it controls the fault dimension and 
hence modifies the position of the source heterogeneities with respect to the stations.  

Furthermore, it is interesting to note that the average sensitivity to 𝜎!" (amplitude of 
the rupture velocity fluctuation) is significant, ranging from ~0.3 to ~0.5 at stations S3, S4 
and S5, while it remains close to 0 at station S1, with the 16% and 84% quantiles equal to -
0.3 and 0.5, respectively). One explanation is that the PGA values at station S1 are essentially 
controlled by a small portion of the rupture area (statistically equally occupied by small or 
high rupture velocity patches), while the other stations, located at larger distances, “see” the 
whole rupture and PGA is then rather controlled by the maximum rupture velocity patches.  

However, it is important to mention that the sensitivity alone is not sufficient to 
quantify the importance of a given source parameter, because each parameter has its own 
range of variability. Defining the physically possible range of source parameters is important. 
For example, analyses of past earthquake show that the rupture speed can vary between 0.6 
and 0.85Vs [24], representing a potential ratio change of about 1.4. On the other hand, 
several studies report that the stress drop variability is well characterized by a log normal 
distribution with 𝜎!"(∆𝛕) ≈ 0.8 (e.g. [4], [20], [34]), which means a potential factor change of 
4.3 considering the 68% confident interval. 
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4. PGA variability 

Using our synthetic ground motion database, we next compute the between-event variability 
of PGA, referred to as 𝜎!"(!"#) . It is defined as the standard deviation of the natural 
logarithm PGA values, computed over 150 rupture realizations (50 realizations for each of 
the 3 nucleation positions). The values of 𝜎!"(!"#) for each station and for the 8 analysed 
cases are displayed in FIG. 7. First, we note that the 𝜎!"(!"#) values at station S5 and using 
the far-field approximation are slightly above the values reported in Ground Motion 
Predictions Equations (GMPEs) (ranging between 0.23 and 0.42 [8]), which are essentially 
derived from far-field recordings. The values obtained for the 8 cases are in overall similar 
for each case, meaning that the statistical source parameters have little impact on the PGA 
variability. We note, however, that 𝜎!"(!"#) generally has a smaller value for small values of 
the correlation lengths ax and az (case 5). 𝜎!"(!"#) is also higher at the stations S2, S4, 
strongly affected by directivity effects, as the standard deviation of the rupture velocity 
increases (cases 4, 6 and 7). Finally, 𝜎!"(!"#) reaches its highest value (~0.6) at station S1, 
which is the closest to the rupture. 
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FIG. 5. Sensitivity of the PGA to the different kinematic rupture parameters at stations S1 to S5, as 

well as for the far-field approximation. The colors represent the median value of PGA computed for 

150 simulations (50 realizations for the three considered hypocenter). The (+) and (-) represent the 

sign of the sensitivity median value. The contour lines represent the quantiles 16% and 84%, shown 

by solid lines if the values are positive, and by dashed lines for negative values. For illustration, 4 

histograms of the sensibility values of the PGA are shown.  
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FIG. 6. Two realizations of heterogeneous ruptures of a M7 event, with L=55km, Vr=3km/s, and 

Trise=4s, tapered at the boundaries and the corresponding acceleration computed using Equation (3). 

The distribution of the slip, rupture speed and rise time are rescaled from FIG. 3.  

5. Conclusion 

Deploying ground motion simulations based on kinematic rupture models, we investigate the 
origin of the PGA and its variability. We obtained the following results: 

(1) in the case of homogeneous ruptures, the PGA is essentially controlled by the rupture 
stopping phases at the fault border. Those phases are poorly sensitive to the stress drop but 
very sensitive to the rupture velocity value and the tapering function used to avoid stress 
singularities at the fault borders; 

(2) in the case of heterogeneous ruptures, the PGA is mainly controlled by the average 
rupture velocity and to a lesser extent, by the average stress drop and the standard deviation 
of rupture velocity (controlling the amplitude of rupture velocity fluctuations). The other 
statistical source parameters (correlation length and correlation between slip and rupture 
velocity) have a very weak impact on the PGA; 

(3) the sensitivity to the stress drop is ~0.2, that is much smaller than the value of 0.8 
predicted by the random vibration theory and assuming a Brune (1970) source model;  

(4) the PGA variability 𝜎!"(!"#) increases as the distance to the rupture Rrup decreases. It is 
slightly larger than the reported between-event variabilities at distances of the order of the 
rupture dimension, and reaches 0.6 for Rrup = 5 km.     
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FIG. 7. PGA variability for the different cases defined in TABLE 1 and for the different stations. The 

grey box delimits the values of the between-event variability obtained in some recent GMPEs [8]. 
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APPENDIX 
 

APPENDIX 1: 1-D velocity model used in our simulations. 

H (km) Vp (km/s) Vs (km/s) Rho (g/cm3) Qs 

0.00 6.20 3.58 2.70 220 

14.00 6.80 3.93 2.86 220 

34.00 8.05 4.65 3.28 220 

50.00 8.25 4.76 3.29 220 

80.00 8.50 4.91 3.50 220 

 

 
APPENDIX 2: Accelerograms computed at different stations with the horizontal components in black (EW) and 
red (NS), as well as in the far-field (FF) approximation, resulting from the rupture realization shown on the 
right, corresponding to case6 of TABLE 1. 
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