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Abstract. In France’s tectonic context, where seismicity is moderate, records do not cover the whole range of vari-
able configurations useful for the evaluation of seismic hazard. Usually, a set of empirical models established in sim-
ilar context (Italy, the Mediterranean Basin, U.S.A., Japan, etc) is considered through a model selection process and
with the help of a logic tree. Ultimately, this approach is mainly based on the scientist’s expertise. There is a data-driven
method able to address the issue of model predictive quality evaluation and of model selection without any additional
hypothesis: the Bayesian Model Averaging approach (BMA). This method is an extension of classical Bayesian cal-
ibration techniques and allows to take into account a set of several models. By making these models encounter a dataset
of observations through a statistical framework, BMA approach provides an unbiased evaluation of each model like-
lihood and moreover, it produces a weighted average formula using each model considered to get the best predictive
result. The BMA method is processed with nine GMPEs (Ground-Motion Prediction Equations) issued from several
databases including NGA2 (Next Generation Attenuation) and RESORCE (Reference database for Seismic grOund-
motion pRediction in Europe). We use the Markov Chain Monte-Carlo method (MCMC) and the Maximum Likeli-
hood Estimation approach (MLE) with around 1000 records issued from the RESORCE-2013 database. Results tend
to show that BMA algorithm has a promising potential: it provides not only a hierarchy of GMPEs based upon their
statistical accordance to seismic records, but also a new predictive model – combination of the GMPEs – with an en-
hanced statistical predictive quality compared to the most efficient models used separately.
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1 Introduction

Ground Motion Prediction Equations (GMPEs) are empirical models used in Seismic Haz-
ard Assessment (SHA) usually determined by adapted linear regression techniques from ground-
motion data recorded by seismic networks. Ground-motion can also be inferred from more the-
oretical physical-based models. Since the proposal of the probabilistic approach (PSHA) by
Cornell and McGuire [19; 36], in the aim of representing the random characteristic of the seis-
mic processes, three variables are considered as random variables in the methodology: location
and magnitude of earthquakes and expected ground-motion at a given site. In this study, we
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will focus on the epistemic uncertainties included in the simulation of the ground-motion at a
given site due to the lack of knowledge and data. Despite the sophistication of models, some
discrepancies between predicted and observed seismic intensity measures (such as PGA, PSA,
etc) do exist in certain conditions and situations due to: incomplete and simplified representation
of the physical processes, model structural inadequacies, measurement errors, conversion be-
tween magnitudes scales, uncertainties in fault mechanism, soil conditions (and more generally
uncertainties in the metadata assessment). In low-seismic regions, the sparsity of data obliges to
accommodate models developed using strong motions recorded in other regions. Prediction of a
single model can lead to bias of the forecast or under-estimation of its variance. Quantification
of uncertainties in ground-motion prediction remains a challenge in PSHA and is partly arbitrary
solved by fixing values or threshold (like the number of standard deviation considered in the
integral computation). To overcome the limitations of the single-model approach and improve
the estimation of uncertainties, the multi-model simulations have come out as a convenient way
and have become a regulatory requirement in PSHA (IAEA [30], NRC [38]).

With the multi-model approach, published models have to be selected and results have to be
combined. The standard methodology in PSHA consists in the use of a logic-tree weighting each
model. Epistemic uncertainties of weighted GMPEs predictions are then associated to a Monte-
Carlo framework in order to study the uncertainty of aleatory variables. Weighting the GMPEs
is generally a matter of experts’ judgement which could raise some discussions and difficulties.
To address this issue, weights could be determined in a quantitative way reducing subjectivity
by comparing the models performance in front of observed data. Some earlier studies proposed
different frameworks for model selection and ranking for particular datasets [42; 23; 33]. In a
multi-model ensemble perspective, an alternative approach named Bayesian Model Averaging
(BMA) is proposed.

This is an extension of standard Bayesian inference approach in the presence of multiple
competing models and has been widely used in the social and health sciences [41; 29]. With
the BMA approach, the overall prediction PDF (Probability Density Functions) is a weighted
average of predicted PDFs based on each of the individual models; the weights are the estimated
posterior model probabilities and reflect the models prediction quality regarding a specific set
of training data, relatively to the other models. The BMA forecast variance decomposes into
two components, corresponding to within-model variance and between-model variance. While a
standard ensemble spread only captures the first component, the BMA approach accounts for the
effect of models combination and offers a way to predict unknown responses more reliably than
each individual model in a set. The objective of the paper is to explore how BMA can improve
accuracy and reliability of ground-motion prediction in either PSHA or DSHA (Deterministic
Seismic Hazard Assessment) when multi-models are used. The performance of BMA including
nine GMPEs will be investigated for the RESORCE database events ground-motion forecast-
ing. The prediction uncertainty quantification can be very helpful for decision makers in seismic
codes for design purposes and reduction of damages from earthquakes. This approach provides
not only a hierarchy of GMPEs based upon their statistical accordance to seismic records, avoid-
ing any arbitrary choices, but also a new predictive model, combination of the GMPEs, with an
enhanced statistical predictive quality compared to the most efficient GMPE used separately.

In section 2 we present the BMA main ideas and how the BMA model can be estimated. In
section 3 we give BMA results using nine GMPEs along with the RESORCE-2013 [4] database
records of events and in section 4 we propose some concluding remarks.
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2 Bayesian model averaging

2.1 Principle of the BMA method

The standard procedure, i.e. selecting a set of empirical models through a logic tree to
make predictions of seismic hazard, omits a source of uncertainty. These models have been
selected among several competing models, many of which are possible candidates for describing
a given seismic situation. Other plausible models could provide different answers and this is a
source of uncertainty in drawing conclusions. Put another way, although there may be strong
arguments (the physicist’s expertise) leading to the selection of models, there is often no such
strong argument for absolutely disqualifying the other models. And if at least one of them
could lead to radically different conclusions, ignoring it underestimates uncertainty and is a
risky approach.

Bayesian model averaging [41; 34; 29] adress this problem by considering the entire ensem-
ble of models first considered. If one wants to produce a forecast of a given quantity of interest
y, i.e the Peak Ground Acceleration or the Pseudo Spectral Acceleration, based on the training
data D and with a set of K models M1,M2, ...,MK (the GMPEs), we have an expression for the
forecast PDF p(y |D) given by the law of total probability:

p(y |D) =
K

∑

k=1

p(y |Mk ,D)p(Mk |D), (1)

where p(y |Mk ,D) is the prediction PDF of y conditioned with the data D using the model Mk

alone, and p(Mk |D) is the posterior probability of model Mk being the best suited to make pre-
dictions given the training data D. Prediction PDF p(y |Mk ,D) in (1) refers to the most classical
Bayesian approach where posterior probability of one or several unknown model parameter(s)
are infered from the data D through the evaluation of the model likelihood, approach detailed
in the next section. What represents the specificity of the BMA approach in (1) is the posterior
probability of model p(Mk |D). Since we have stated that the suitable choice of model, i.e. the
selection of the best one by a user considering the observations D, is a source of uncertainty that
cannot be ignored, we can consider it as a new unknown parameter, a K-dimensional, discrete,
random variable, for which one can process a classical Bayesian inference as well. These poste-
rior probabilities add up to one,

∑K
k=1 p(Mk |D) = 1, so they can be considered as weights, and

the BMA prediction PDF is therefore a weighted average.

BMA weights are obtained from prior probabilities of models p(Mk ) following the Bayes’
theorem:

p(Mk |D) =
L(Mk |D)p(Mk )

∑K
j=1 L(Mj |D)p(Mj )

, (2)

where L(Mk |D) is the marginal likelihood of the model Mk , i.e. the probability to predict the
data D when using the model Mk : L(Mk |D) = p(D |Mk ). Priors p(Mk ) correspond to the
prior trust in models, before testing them on the training data D. Using the expert judgment to
quantify these prior probabilities can then appear tempting but with the BMA approach, we often
consider these priors as a uniform distribution p(Mk ) = 1/K . There are two main raisons for
that. First the Bayesian perspective usually consists in making the less informative hypothesis
possible ensuring that the inference mainly results from the good fitting of a model to data, and
not from additionnal, restraining assumptions. Then, using expert knowledge to quantify the
prior distribution appears difficult, if not arbitrary, since there is not any known, logical relation
allowing to convert the knowledge about a model set into prior model probabilities.



4 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear
Installations: issues and challenges towards full Seismic Risk Analysis
Cadarache-Château, France, 14-16 May 2018

From the composite distribution (1), we can express the expectation and the variance of the
BMA prediction of y conditioned with the observation data D:

E (y |D) =
K

∑

k=1

p(Mk |D)E (y |Mk ,D), (3)

and

Var(y |D) =
K

∑

k=1

p(Mk |D)Var(y |Mk ,D) +
K

∑

k=1

p(Mk |D) (E (y |Mk ,D) − E (y |D))2 , (4)

where E (y |Mk ,D) and Var(y |Mk ,D) are respectively the expectation and variance of the poste-
rior distribution of y conditioned with the data D using the model Mk alone. The variance of the
composite BMA model (4) shows two distinct terms. The first term, called within-model vari-

ance, accounts for the average degree of uncertainty in each model prediction. The second term,
called between-model variance, corresponds to the degree of uncertainty in response prediction
resulting from model selection uncertainty.

With a uniformally distributed prior, the BMA weights are directly proportional to the
marginal likelihood of models. Thus, for the weights evaluation and for the posterior predic-
tion PDF in (1) as well, the BMA approach requires the computation of the models likelihood,
i.e. their posterior statistical accordance to observations D.

2.2 Models likelihood

Like any other regression technique, evaluating a model likelihood implies that there are
several or at least one degree of liberty attached to the model and/or to the data on which one
can act to seek the best fitting between the model and the data. These uncertainties can play
different roles: they can be unknown physical parameters, empirical coefficients one wants to
adjust, model input errors, model prediction errors (aleatory or epistemic) or experimental errors
for instance. In the case of GMPEs here, we will limit to a single prediction error term to present
the method. What follows can be easily extended to a random vector of uncertainties instead of
a unique scalar random quantity.

Since the origin of uncertainties such as the model prediction error and the measurement
error cannot be conveniently distinguished and properly interpreted in practice, we adopt here
a common formulation of the problem involving an unknown error term that is supposed to
account for model discrepancy and for the measurement errors [39; 15]. Thus, each GMPE is
represented by:

y(x) = f k (x) + ǫ k , (5)

where y is the unknown quantity of interest for which we want a prediction, here the logarithm
of the 5 %-damped PSA at a given frequency, f k is the deterministic prediction of the GMPE
Mk , x is a set of earthquake characteristics used as inputs of the GMPEs (moment magnitude,
distance, focal depth, VS30, fault type, etc), and ǫ k is the random prediction error attached to the
model Mk . The additive formulation is appropriate in that case since we consider the logarithm
of the ground acceleration and because each GMPE is established considering a log-normal error
term: PSA ∼ exp(y + ǫ ).

The only assumption we have to make here is the distribution form of the prediction error.
Because GMPEs are built following a log-normal discrepancy between predictions and data, it
appears natural to assume for ǫ k a normal distribution:

ǫ k ∼ N
(

µk ,σ
2
k

)

, (6)
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where µk and σk are hyperparameters for the normal distribution: the expectation and the stan-
dard deviation, respectively. This assumption is further discussed and justified in section 3.
These hyperparameters are considered unknown and the aim of the Bayesian inference is to find
their posterior distribution. The reason to do that instead of directly using ǫ k is to make less
assumptions: a direct inference on ǫ k would require to define precisely its prior distribution,
quantity for which we do not have any specific knowledge. One could argue that it is not en-
tirely true: the GMPEs could provide a convenient prior for ǫ k with their centered log-normal
error term but that quantity only accounts for the discrepancy with the data used to establish the
model. Here we want to consider any dataset of observation.

Following that configuration, the marginal likelihood can be defined as the integral of the
likelihood function over the hyperparameters (hyperparameters are marginalized by the integra-
tion):

L(Mk |D) =
∫

σk

∫

µk

l (Mk , µk ,σk |D) p(µk )p(σk ) dµkdσk , (7)

where p(µk ) and p(σk ) are the prior distributions of the hyperparameters, and l (Mk , µk ,σk |D) is
the likelihood function (of µk and σk) that is the probability to predict the observation D with the
model Mk when using µk and σk values in the random prediction error term ǫ k . To get a specific
expression for the likelihood function, let’s consider that D is a vector of N single observations
dn of the quantity y, i.e. a set of N 5 % damped horizontal PSA at a given frequency issued from
N distinct seismic records, we can then write

l (Mk , µk ,σk |D) =
N

∏

n=1

g(dn |Mk , µk ,σk ), (8)

where g(·|Mk , µk ,σk ) is the prediction PDF for y using the GMPE Mk and the hyperparameters
µk and σk . Using the assumptions (6) and (7), it follows:

l (Mk , µk ,σk |D) =
N

∏

n=1

1
√

2πσk

exp *
,
− (dn − f k (xn) − µk )2

2σ2
k

+
-
, (9)

where xn is the set of model inputs corresponding to the nth seismic record.

As regards the hyperparameters priors, it is often assumed in Bayesian approaches that they
must follow a non-informative distribution. The invariant Jeffreys’ prior [31] can be chosen for
instance, or the more common uniform prior: µk ∼ U (µa, µb) and σk ∼ U (σa,σb). Let’s
note that these assumptions are not absolutely neutral. Indeed, the inference process can be
highly dependant to where the hyperparameters bounds are located. In our case, the domain
[µa, µb] × [σa,σb] must be large enough and must contain the essential part of the likelihood
function otherwise a bias is clearly induced in the computation.

The proper evaluation of the likelihood function and above all of the marginal likelihood
integral appears crucial here: once they can be correctly estimated, we then have acces to the
joint posterior probability of hyperparameters:

p(µk ,σk |D) =
l (Mk , µk ,σk |D) p(µk )p(σk )

L(Mk |D)
, (10)

then to the posterior PDF of the model prediction error:

p(ǫ k |D) =
∫

σk

∫

µk

g(ǫ k |µk ,σk ) p(µk ,σk |D) dµkdσk , (11)
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and directly to the prediction PDF of y used in the weighted average (1):

p(y |Mk ,D) =
∫

σk

∫

µk

g(y |Mk , µk ,σk ) p(µk ,σk |D) dµkdσk . (12)

The main difficulty is that as a general rule, the likelihood function is not straightforward to
compute, its evaluation can be costly. The estimation of its integral is then a non-trivial challenge,
all the more difficult as there may be a large number of uncertain parameters, and therefore
a hyperparameter space of large dimension. There is a wide class of methods and algorithms
able to adress this problem [49; 39; 29; 18; 47]. We briefly present two of them in the next
subsection: the MLE method (Maximum Likelihood Estimation), specifically suitable for cases
where the parameter distribution is known and simple, and the MCMC algorithm (Markov Chain

Monte Carlo), useful for more general, large dimension problems.

2.3 Estimation methods

For each model Mk , the Bayesian formulation can be used to determine the model param-
eters θk . It can be a single scalar θk = ǫ k or a vector θk = [µk ,σk]⊤, a vector that could also
contain some GMPE’s coeficients as additionnal random parameters for instance. We consider
that every admissible θk belongs to a parameter space noted Θk . If all parameters are joinly
uniformly distributed then the prior distribution of these parameters is constant over the entire
space Θk and Bayes theorem can be written as

P(θk |D,Mk ) =
P(D |θk ,Mk )P(θk |Mk )

P(D |Mk )
= c P(D |θk ,Mk ), (13)

where c is a constant. The marginal likelihood is then given by

P(D |Mk ) =
∫

Θk

P(D |θk ,Mk )P(θk |Mk ) dθk , (14)

where we use the conventional representation of weak prior information through the density
P(θk |Mk ) ∝ 1. We can think of calibration of θk as a preliminary to computing the BMA
weights P(Mk |D), following the rule (2).

The main computational issues concern the estimate of (14), and the fact that we need a
large number of model evaluations for each realization of θk . For peak shape likelihood func-
tions, however, an excellent approximation of (14) is given by the Maximum Likelihood Es-
timation (MLE) and indeed, the problem can readily be solved analytically for the GMPEs,
provided that we impose the condition (6). The details of calculations are given in the appendix.
When the posterior is an intractable expression, a fairly general approach is to use a MCMC
method [37; 28], which constructs a Markov chain whose stationary distribution is the posterior
distribution. A simple MCMC implementation uses the Metropolis algorithm that, for a cur-
rent realization θm, generates θ∗ from a symmetric distribution, then computes the Metropolis
acceptance probability

α = min
{

1,
l (Mk , θ

∗
k
|D)

l (Mk , θ
m
k
|D)

}

, (15)

and finally, sets θm+1 = θ∗ with probability α and θm+1 = θm, with probability 1 − α. Markov
chains construct a progressive picture of the target distribution, proceeding by local exploration
of the state space Θk until all the regions of interest, meaning areas of maximum likelihood,
have been covered. Hence, (14) can be estimated with a standard Monte-Carlo estimate. In this
study, we diagnose the successful convergence and the proper mixing of the Markov chains when
reaching a Gelman-Rubin’s potential scale reduction factor [27; 21] close to one.
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3 Application

3.1 The selection of GMPEs

The selection of GMPEs is one of the most important elements of any SHA study (be it
Probabilistic or Deterministic), impacting strongly the SHA results in terms of level and disper-
sion predictions. In this study, GMPEs have been obtained from local, regional and worldwide
data all of which satisfy the a priori requirements for shallow crustal tectonic settings [20; 12].
A parsimony principle has been adopted to avoid adding more uncertainties in the estimation of
unknown parameters required in complex models (due to the lack of information in the european
database RESORCE). Many models had been analyzed by Delavaud et al. [23] in the SHARE
(Seismic Hazard hArmonization in Europe) project as the candidate GMPEs for seismic haz-
ard in Europe with the likelihood-based ranking method [42]. In another study, Beauval et al.
(2012 [7]) also used this method to investigate GMPEs with the french accelerometric database
(RAP). In GEM (Global Earthquakes Model) an Euclidean distance-based ranking method [33]
has been proposed and applied to the Middle East. According to these studies combined results
using the following GMPEs seem appropriate for Europe: Berge-Thierry et al. (2003 [8]), Zhao
et al. (2006 [50]), Cauzzi & Faccioli (2008 [16]), Akkar & Bommer (2010 [2]), Bindi et al.
(2010 [9]). Many models have been updated by the authors since then and will be used in their
most recent versions: Faccioli (2010 [25]), Akkar & Bommer (2013 [3]), Cauzzi (2015 [17]),
Bindi et al. (2011 [10]) for Italy and Bindi (2013 [11]) for Europe.

Furthermore, the U.S. NGA (Next Generation Attenuation) models developed for more ac-
tive regions from strong ground motion must have to be considered due to their extensive and
standard use in seismic hazard analysis. According to the NGA comparison done by Abraham-
son et al. (2008 [1]) and their applicability in the Euro-Mediterranean region by Stafford et al.
(2008 [45]), Boore and Atkinson (2007 [13]) has been chosen as a template among all NGA
models for two reasons: first, in general, the median ground motions are similar to one another,
therefore, a single model is sufficient; then it is simple (a minimum of parameters is used in com-
parison with the other models). The latest model updates have been used for this study: Boore
and Atkinson (2014 [14]). Berge-Thierry et al. (2003 [8]) is the oldest and simplest model used.
This model has been developed for the French nuclear safety regulation (Règle Fondamentale de
Sûreté, RFS 2001-01) and is still cited as a reference by the Nuclear Safety Authority (reference
Guide 22, ASN, 2017 [5]). As this last model used surface magnitude instead of moment magni-
tude, a relation to convert magnitudes is necessary. Scordilis (2006 [44]) published such relations
for different magnitude scales to help building homogenous global seismic catalogs in the most
reliable and used scale, the moment magnitude. To investigate the performance of several se-
lected GMPEs in face with the earthquakes from Europe and the Middle East of the RESORCE
database, three models developed using the database itself by Akkar et al. (2013 [3]), Bindi et
al. (2013 [11]), and Derras et al. (2016 [24]) have been considered. In the results presented here,
the nine selected GMPEs Berge-Thierry et al. (2003 [8]), Zhao et al. (2006 [50]), Bindi et al.
(2011 [10]), Akkar et al. (2013 [3]), Bindi et al. (2013 [11]), Boore and Atkinson (2014 [14]),
Cauzzi (2015 [17]) and Derras et al. (2016 [24]) will be designated with the keywords BT03,
ZH06, FA10, BI11, AK13, BI13, BO14, CA15, DE16, respectively.

3.2 The RESORCE database

As source of training data for the Bayesian calibration of empirical models, we use seis-
mic records and associated metadata gathered in the RESORCE database (Reference database
for Seismic grOund-motion pRediction in Europe). RESORCE is a freely accessible platform
for accessing and retrieving reliable ground-motion data from pan-European earthquakes and
associated seismological and geotechnical parameters. For this study, we use the state of the
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Figure 1: (a) MCMC Metropolis-Hastings sampling of each prediction error ǫ k attached to the

nine considered GMPEs for the period T = 1 s. (b) Quantile-quantile plot: the nine empirical

deciles of each sample versus the nine theoretical deciles of the normal distribution.

RESORCE-2013 database version [4] as it was when accessed on January 2018. That represents
5 882 seismic records from 1 814 events and 1 540 strong-motion stations.

Some selection steps must be carried out on these data in order to be able to proceed the
Bayesian study with the selected GMPEs. First, we have to make sure the records used present
enough information regarding the GMPE’s inputs and outputs, saying the distance (epicentral
distance, hypocentral distance, Joyner-Boore distance), the VS30 speed, the focal depth, the fault
mechanism, the event magnitude, and the horizontal pseudo-spectral ground acceleration (two
components) must all be avalaible. We select specific metadata ranges to ensure these records are
in the valid application domain for the nine selected GMPEs, meaning the moment magnitude
must be in the range [5,7.3], the distance in the range [4,150] km and the VS30 speed must be
in the range [300,1200] m.s−1. Then, several magnitudes types are present in the database (Mw,
Ms, Mb, Md, Ml) but the moment magnitude Mw remains the majority (for 79 % of records), we
therefore only select records of events for which the magnitude is provided in Mw in order to
avoid any issue regarding the magnitude conversion. Likewise, we only select events for which
the fault mechanism is indicated as Normal, Strike-Slip and Reverse. This selection procedure
provides a subset with N = 939 records to use for the BMA analysis.

The GMPE’s output used in the statistical comparison with RESORCE observations is the
logarithm of the horizontal 5 % damped pseudo-spectral acceleration (PSA), expressed in g,
computed for a specific set of periods (see Table 1) for which we can use exact coefficient val-
ues provided in the litterature for the nine selected GMPEs. The corresponding observations
from the RESORCE database are obtained with the geometric mean of the two horizontal PSA
components.
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Figure 2: For each one of the nine considered GMPEs and for the period T = 1 s: contours indi-

cate the log-likelihood function of the hyperparameters µk and σk , the dark line reprensents the

MCMC markov chain for the hyperparameters (µ(m)
k
,σ

(m)
k

)m≤M starting from the point µ
(0)
k
= 0 and

σ
(0)
k
= 0.5, and the black cross shows the analytical maximum of likelihood (µ∗

k
,σ∗

k
) obtained with

the MLE method.

1 2 3 4 5 6 7 8 9 10
Period T [s] 0.02 0.05 0.1 0.15 0.2 0.3 0.5 1 1.5 2

Table 1: Set of periods for which the 5 %-damped horizontal PSA is used for the BMA calibration

3.3 Application of the BMA approach

As a general rule, a proper Bayesian inference requires to make as few assumptions as possi-
ble. Even if the normal distribution hypothesis (6) for the prediction error ǫ k appears reasonable,
the MCMC Metropolis-Hastings algorithm provides a formal way to validate that hypothesis. As
a matter of fact, before working with the hyperparameters µk and σk , one could wonder what the
posterior distribution of ǫ k would look like if we did not assume a normal distribution. So, in the
first place, let’s assume the prediction error have a non-informative prior: a uniform distribution.
The Metropolis-Hastings algorithm can then be carried out directly on ǫ k for each GMPE for the
period 1 s (results are similar for the other periods). The uniform prior is ǫ k ∼ U (−2,2), the
starting point is ǫ (0)

k
= 0, and the chain’s standard deviation is c = 0.005. Figure 1-(a) shows

for the resulting MCMC sampling for the nine GMPEs. The Markov chain’s length is M=5 000,
including 500 iterations of warm-up. Figure 1-(b) shows a quantile-quantile plot that enlights
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Figure 3: Summary of calibration results. For each one of the nine considered GMPEs and for

periods from T = 0.02 s to T = 2 s (see Table 1): the dark line shows the optimal biais values µ∗
k

and

the colored surface indicates the intervals µ∗
k
± 2σ∗

k
where µ∗

k
and σ∗

k
are issued from the Bayesian

calibration with RESORCE-2013 data. The horizontal PSA is computed with GMPEs in g.

the nature of posterior ǫ k’s distribution [32]. The linear relation between the empirical deciles
of the Markov chains and the theoretical deciles of the normal distribution is a validation of the
normality assumption. Therefore, from now on we work with the assumption (6) and adjust-
ment variables are the hyperparameters µk and σk , the prediction bias and the prediction error’s
standard deviation, respectively.

The MLE estimation of optimal hyperparameters (18,19) is then computed and compared
to a MCMC algorithm processed in the hyperparameter space. Figure 2 shows the result for
the nine GMPEs and for the period 1 s. The hyperparameters priors are µk ∼ U (−1,1) and
σk ∼ U (0.5,5), the chosen starting point is µ(0)

k
= 0 and σ (0)

k
= 0.5, and the MCMC stan-

dard deviation is 0.01 for both hyperparameters. Let’s notice that the calibration ends up with
non-zeros corrective bias µ∗

k
for each GMPE. That was expectable and does not represent any

individual, predictive bias from GMPEs: values of µ∗
k

only account for the statistical discrep-
ancy between GMPE’s predictions and the training database used here (that is not the original
observation database used to establish the GMPEs). Calibration results for the whole range of
periods (Table 1) are summarized in figure 3.
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Figure 4: For each one of the nine considered GMPEs and for periods from T = 0.02 s to T = 2 s

(see Table 1): dashed lines show the original σGMPE estimated from the GMPE regression, plain

lines show the optimal σ∗
k

values issued from the Bayesian calibration with RESORCE-2013 data.

The horizontal PSA is computed with GMPEs in g.

More specifically, in figure 4 the posterior standard deviation of prediction errors σ∗
k

are
compared with the original σGMPE values (obtained from the initial GMPE estimation on their
own dataset). Despite the fact these GMPEs are issued from different regions and datasets, the
statistical distance with RESORCE-2013 data (σ∗

k
) does not differ much from the discrepancy

relative to original data (σGMPE): same orders are obtained. The fact that the prediction bias µk

is calibrated along with the standard deviation σk is certainly the reason of that: if the inference
was performed on the standard deviation alone, larger values would have been obtained. Besides,
values appears quite close for GMPEs established using data from RESORCE such as Akkar et
al. (2013 [3]) and Bindi et al. (2013 [11]). For such models, the prediction bias µ∗

k
appears close

to 0 as well (figure 3). The only differences result from the fact we did not select the exact same
subsets of records from RESORCE database.

The BMA weights and the BMA variance components (4) are shown in figure 5. The fact
that most of computed BMA weights appear very close to 0 does not mean that corresponding
GMPEs are absolutely not suited to make predictions on European seismicity: these weights
are relative values obtained with (2) and should be interpreted only compared to a specific set
of models and to a specific set of observed data. With our set of nine GMPEs and our subset
of 939 records issued from RESORCE-2013, three GMPEs appear to share the highest values
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Figure 5: (a) Posterior BMA weights P(Mk |D) for each one of the nine considered GMPEs and

for periods from T = 0.02 s to T = 2 s (see Table 1). (b) Resulting variance of the BMA combina-

tion of the nine considered GMPEs and its 2 components: the within-model variance and the the

between-model variance. The horizontal PSA is computed with GMPEs in g.

of BMA weight: Bindi et al. (2011 [10]), for Italy and Akkar et al. (2013 [3]) and Bindi et
al. (2013 [11]) for Europe. Looking at the BMA variance components (figure 5-(b)) offers
a clear insight of what could be the resulting Bayesian strategy. As a matter of fact, for large
periods (low frequencies), the total variance of the BMA combination is only the result of within-
model variance: this means only the model with highest weight does contribute (Bindi et al.,
2013) and could then be selected alone. But for lower periods (high frequencies), the between-
model component of variance is not neglectable anymore, meaning more than one model have a
significant contribution to BMA predictions and should therefore be taken into account together:
Bindi et al., 2011, Akkar et al., 2013 and Bindi et al., 2013.

The validation of that BMA strategy is shown in figure 6. 739 records of events are ran-
domly selected among the subset of 939 considered observations and are used to calibrate the
BMA combination of models, and predictions of the resulting model are then compared to the
200 remaining observations. On average, results show that 94.4 % of these observations are in
the 95 % confidence interval and 98.8 % of them are in the 99.7 % confidence interval. The fact
that the BMA combination based upon the 3 most performing GMPEs provides correct predic-
tions regarding the RESORCE observations may be reassuring but it is not very surprising given
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Figure 6: 99.7 % and 95 % confidence intervals of BMA predictions (light green and light blue

areas, respectively) compared to 200 events that were not used for the BMA calibration (black

dots). Events are ordered to have an increasing BMA expectation (blue line). The horizontal PSA is

computed with GMPEs in g. Results are shows for periods (a) 2 s, (b) 1 s, (c) 0.15 s and (d) 0.05 s.

that some of the selected GMPEs were established with RESORCE data. In fact, the strength of
the BMA approach can be brought out when compared with the models taken individually.

Figure 7 shows the comparison between the predicted residual error sum of squares (PRESS)
of the BMA model combination and the quadratic mean of prediction error of each individual
GMPE. More specifically, a leave-one-out strategy [26] is used to estimate the PRESS statistic:

PRESS =
1
N

N
∑

n=1

(

E[FBMA,n(xn)] − dn

)2
, (16)

where dn is the nth observation, E[.] is the expectation and FBMA,n(xn) is the random BMA
prediction for the nth observation based upon the calibration of GMPEs using the whole dataset
except dn. Figure 7-(a) shows the comparison whith the GMPEs before the Bayesian calibration
of prediction error and 7-(b) shows the GMPE’s performance after being calibrated with obser-
vations: the calibration brings a clear improvement of preditive performance for each GMPE.
Moreover, when the most performing models are then combined, the resulting BMA combina-
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Figure 7: Coloured lines: quadratic mean of prediction error for each GMPE according to RE-

SORCE data, prior predictions in figure (a), and posterior predictions in figure (b), i.e. after

Bayesian calibration. Black line: predicted residual error sum of squares (PRESS) of the BMA

combination of calibrated GMPEs (leave-one-out strategy for the calibration (16)).

tion shows even better performances (the PRESS statistic is lower for the BMA combination
rather than for each GMPE for low periods in figure 7-(b)). That result shows the specificity of
the BMA method and what one can expect from it: in addition to the calibration and the ranking
of the considered models, that approach offers a way to combine the calibrated models together
in order to reach a better statistical accordance to observations.

4 Conclusion

The BMA approach has been carried out with nine GMPEs and around 1000 records of
events issued from the RESORCE-2013 database. By using a classical approach, i.e. consider-
ing a random prediction error term ǫ k attached to the GMPEs, but without ignoring the prediction
bias µk , the BMA procedure has already proven a promising potential as a data-driven alterna-
tive to logic-trees in a SHA perspective. Making as few assumption as possible, each empirical
model is calibrated according to observations, then models are ranked according to their respec-
tive likelihood and finaly a new model, combination of the most performing ones, is proposed
and that combination provides better predictions compared to the most efficient GMPE used sep-
arately. More specifically, by studying the horizontal 5 %-damped PSA for different frequencies,
it appeared that distinct strategies should be carried out according to the frequency range: the
selection of a unique model for low frequencies (Bindi et al. 2013 [11]) and the combination of
three GMPEs for higher frequencies (Bindi et al. 2011 [10], Akkar et al. 2013 [3], Bindi et al.
2013 [11]).
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We must recall that the goal of this study is to present the BMA method feasibility and
potential for the use of GMPEs, without any PSHA obligation, yet. Results presented here
should therefore be taken cautiously. Indeed, interpretation and generalization of the BMA re-
sults deeply depend on the observations used and the model set considered. The more observa-
tions (and associated meta-data) we have to represent the studied seismicity, the more performant
is the BMA combination we get. Likewise, the more models we use, the more general can be
considered the resulting BMA process. The latter point is crucial: the implicit assumption be-
hind the BMA approach is that the whole set of observations is reachable by the space formed
with the models considered. Put in another way, all probabilities are implicitely conditional on
the set of models under consideration. The larger is the set of models, the larger is then the scope
of the Bayesian inference.

Hence, several approaches can be considered in order to extend the method presented here.
First, more GMPEs could be added to the study. Despite being promising, that kind of approach
may end up with a limitation: adding too much models could make decrease the size of ob-
servation data eligible for the study. Indeed, the range of metadata (magnitude, distance, VS30,
etc) of the training dataset has to be available and compatible with the domains on which every
GMPEs were established. The risk is to make decrease these metadata ranges. Another way to
make the BMA approach deliver its full potential is to increase the dimension of the space of
considered models by adding degrees of freedom. For instance, in addition to the prediction er-
ror term, the Bayesian calibration can be performed on the GMPE’s coefficients as well. Several
works already adopt that kind of approach: GMPE’s coefficients can be deduced from data using
an Artificial Neural Network (Derras et al., 2016 [24]), or with a Bayesian inference using the
MCMC method (Kowsari et al., 2017 [35]). Several functional forms of GMPEs can be under
consideration, their respective coefficients and prediction errors can then be calibrated using a
MCMC algorithm, and these calibrated models can finally be combined with a BMA strategy.
Furthermore, such an approach may allow to use observations whose features are not necessar-
ily covered by GMPEs’ validity domains. The overall idea is that the BMA method should be
integrated in a dynamical process by adding any new observation, any new GMPE or functional
form of GMPE when they become available so that the calibration, the ranking, the selection and
combination of models are constantly updated in a machine learning process ensuring the best
predictive performances.

5 Appendix

As a general rule, the MLE approximation of (14) can be solved with classical optimiza-
tion techniques, such as Newton-Raphson or BFGS (Broyden-Fletcher-Goldfarb-Shanno) algo-
rithms. But in some specific cases, where the distribution of the uncertain parameter is known
and simple, the problem can be entirely solved analytically. In our case, a normal distribution is
involved (6), that makes the computation straightforward. The solving of the following system:



∂

∂µk

N
∑

n=1

log g(dn |Mk , µk ,σk ) = 0

∂

∂σk

N
∑

n=1

log g(dn |Mk , µk ,σk ) = 0,

(17)

provides the following analytical expressions for the optimal hyperparameters:

µ∗k =
1
N

N
∑

n=1

dn − f k (xn), (18)
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and

σ∗k =
*
,

1
N

N
∑

n=1

(dn − f k (xn) − µ∗k )2+
-

1/2

. (19)

The MLE estimation of the marginal likelihood is then obtained by using these expressions in
(9):

log L(Mk |D) ≈ −N

(

log 2π
2
+ logσ∗k

)

− N

2
+ cp, (20)

where cp is a constant term corresponding to the uniform priors: cp = −log(µb − µa) − log(σb −
σa). Finally, let’s note that once the optimum is established, one has a convenient and straight-
forward definition of the posterior prediction PDF (12):

y(x) |Mk ,D ∼ N
(

f k (x) + µ∗k ,σ
∗
k

)

. (21)
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